
Erratum

The Horizontal No Free Lunch theorem takes T̃ , the set of possible targets to be a partition of the search
space Ω. However, in the case of multiple queries, they are treated as a single query to a larger search space
ΩQ. Any distribution of targets on the original search space will produce overlapping targets on ΩQ. This
prevents considering the set of possible targets as a partition of the search space ΩQ. As such the horizontal
no free lunch theorem does not properly handle multiple queries.

Theorem 1. Given a uniform distribution over targets of cardinality k, and baseline uniform distribution,
the average active information will be non-positive

Proof. The average active information formula in its general form is
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where T the random variable taking the domain of the powerset of Ω, φ(T ) is the fixed probability of the
baseline uniform search algorithm succeeding given a specific target and ψ(T ) is the fixed probability of the
search algorithm being considered succeeding given a specific target.

By Jensen’s inequality
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Any given target can be represented by a function producing 1 for every point ω in the target, and 0
otherwise. All functions with the same number of targets will be closed under permutation. The algorithms
succeed if they pick a point in the target, which is equivalent running single query and getting a 1. The No
Free Lunch theorem holds for any distribution which is closed under permutation, and thus all algorithms
will have on average, the same probability of success.

E[ψ(T )] = E[φ(T )] =
k

|Ω|
(3)

We note that φ(T ) is a constant, performing the same regardless of the identity of the target. It is a baseline
uniform search, and thus will select every target with the same probability. Therefore,
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This effectively restates the No Free Lunch theorem, the expected performance of two search algorithms does
not differ. Using equation 2:
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Therefore the expected active information is always non-positive.
Additionally, equality only occours if
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is the same for all values of T. This will only occour if both algorithms succeed and fail with the same
probability for every target.

Corollary 1. Given a distribution over all targets, such that targets of the same cardinality have the same
probability: the average active information will be non-positive
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Proof. We can express the average active information as
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Since the probabilities for sets of the same size are the same, Theorem 1 applies to the inner expected value.
The expression then takes the weighted average of non-positive values and thus will be non-positive.

Theorem 2. For every distribution of targets there is some baseline search for which the active information
will always be non-positive.
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for some φ.

Proof. We can rewrite the average active information as:

E[I+] = E

[
− log

φ(T )

ψ(T )

]
= E [− log φ(T )]− E [− logψ(T )] (10)

For every possible distribution over targets, there exists an algorithm, φ, that maximizes E [− log φ(T )].
E [− log φ(T )] ≥ E [− logψ(T )] since φmaximizes the expectation, and thus, E [− log φ(T )]−E [− logψ(T )] ≤
0.

The Horizontal No Free Lunch Theorem does hold in all cases; however, determining the baseline may
be non-trivial.

We thank Dietmar Eben for his attention to our work and pointing out the problem with overlapping
targets.
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