Genetic Algorithms and Irreducibility,

Eytan H. Suchard,
Metivity Ltd.
Email: Eytan_il@netvision.net.il
Phone: +972-4-8700391

Abstract

Genetic Algorithms are a good method of optimization if the target function to be
optimized conforms to some important properties. The most important of all is that the
sought for solution can be approached by cumulative mutations such that the Markov
chain which models the intermediate genes has a probability that doesn’t tend to zero as
the gene grows. In other words each improvement of the gene - set of Os and 1s -
follows from a reasonable edit distance — minimum number of bits that change between
two genes - and the overall probability of these mutations does not vanish. If for reaching
an improvement, the edit distance is too big then GAs are not useful even after millions
of generations and huge populations of millions of individuals.

If on the other hand the probability of a chain of desired mutations tends to zero as the
chain grows then also the GA fails.

There are target functions that can be approached by cumulative mutations but yet,
statistically defy GAs. This short paper represents a relatively simple target function that
its minimization can be achieved stepwise by small cumulative mutations but yet GAs fail

to converge to the right solution in ordinary GAs .

Keywords: Genetic Algorithms, Irreducible Genes.

1. Constructing the fitness function

We will choose a fitness function for which we will construct an easy C++
program. Most important is that our target function will have a gradual path by

which it can be minimized unlike for example a key to a safe !!!

The fitness function is as follows:
Let
Crux=2'+2° +2° +.. . +20¢™ (1.1)

Let the numbers
20,21’22,“.’22111,2211144 (1.2)

be represented by either 1 if they are summed or O if not.

Let Sum be the sum of the powers of two that were selected by the digit 1.

2m+1

Sum= Y 2" st a, {01} (1.3)
Let
Delta = |Crux - Sum| (1.4)

Now let us provide an additional rule - if some of the numbers

2022 2% 2% 2% (1.5)

are selected then Delta is divided by 4 to the power of the number of selected
numbers from the set 2°,2%,2%,....2%,...,2™™.

The result is the target function that we will try to minimize.

Delta

Factor

st. Factor= Y ay, (1.6)

k=0
For example 10101000 will be (Crux - (1+4+16))/(4*4*4).
010101 will be Crux - (2+8+32).

If there are 52 bits then the optimal solution is
01
which minimizes the target to 0. The choice of the denominator in (1.6) is not

Target =

trivial at all. Other choices could be made such as

Delta

Factor

s.t. Factor=) a,, but such a choice would yield a function
k=0

Target =

which is not interesting to evolutionary computation researchers.

The reason for this choice will be seen in the proof of following theorem.

2 Theorem

There exist genes namely,
101010....101011 and 11111111 1110
to which the algorithm converges with probability that tends to 1 as the

number of bits grows, instead of converging to the optimal solution 0101 ...
01010101 if complex mutations, such as inverting all the bits, are not used.

By reordering the indices of the bits or by adding bits that must be 0 for the target
function to be optimal both bits inversion and bits rotation can’t work. For now we
will focus on the definition of the target function (1.6) as is, such that mutations
are simply random bit flips rather than highly organized flips. That is because we
can then rely on evolutionary computation theory and on the fact that the
probability converges to zero if edit distance that is required to reach a better

“gene” diverges in infinity as the number of bits grows.

Proof

Let us recall Crux=2"+2° +2° +...+2¢™ |

We now evaluate following 10 10 10 10 10 11 01 01 ... 01 01 01 (2.1)

such that the last 1 from left to right out of the pair of two successive 1s

is bit 2 +1 starting from bit index 0 on the left.

This bit encodes -2**' when calculating Delta , (1.4).

Our Delta for this “gene” becomes by (1.1) and (1.4),

Delta = |Crux - Sum| =

‘(22r+1 _ o _22r)+(22r-1 _22r-2)+(22r-3 _22r-4)+.”+(2_1)‘ _ (22)
47+ (@ A A7 40 = et ST O UL T
3 3 31 3 3

and the target function to be minimized by our algorithm becomes

2 N 1
Delta 3 '3 1 1
Target = 4Factor = 4r+1 = g + 3 * 4r+1 (2'3)
The term
1 24
T 24)

decreases when r grows or in other words,
if the algorithm already converged to 101010 10 10 11 01 01 ... 01 01 01
then the target function for 10 1010 1010 10 11 01 ... 01 01 01

such that the last 1 out of the pair of two successive 1s, is bit 27+ 3 starting from

bit index 0 on the left and that encodes -2*** when calculating Delta, (1.4).
The target function becomes,

g4r+1 + l
Delta 3 3 1 1 1 1
Target = = =—+ <—+ 2.5
g 4Fact0r 4r+2 6 3 *4r+2 6 3 *41'+l ()

then moving in the wrong direction of evolution by flipping two bits decreases the

target function that we try to minimize !!!

Let us now examine another more general “gene”

010101....1010 10 ... 1010 11 01 01 ... 01 01 01 (2.6)

for which the first wrong bit (in relation to the best “gene” 01 01 01 ... 01), bit 2u
starting from bit index 0 on the left on the left encodes -2, s.t.u < when
calculating Delta, (1.4) and such that the last 1 out of the pair of two successive

1s encodes - 2" when calculating Delta, (1.4). Our target function then

becomes
2 .. 1
Delta 3 3 1 1
Target = = =(—+—)4" 2.7
g 4Fact0r 4r—u+l (6 3 * 4r—u+1) ()

(2.7) shows that even if the evolutionary program is on its way to the best
solution 01010101 01 01 then any wrong sub-sequence that ends with a

correct bit ...1010 10 ... 10 10 11... in the middle grows either left and decreases

u which decreases the target function (2.7) or to the right which increases r and

thus decreases the target function in (2.7).

The shortest edit distance to reduction of the target function in (2.7) is by flipping
two successive bits, either bits 27 +1 and 2r +2 counting from bit index 0 on the
left or by flipping bits 2u—2 and 2u —1.

A very similar proof to (2.5) can be constructed for the gene

1111111111 11 ... 11111001 01 ... 01 01 01 (2.8)

Such that the first zero bit is bit 27 +1 starting from bit O to the right.

The target function then evaluates to,

Tareet = Dela _ R Sy e | N
g 4Fact0r ‘ 4r+l ‘
r+l (2.9)
g ¥ 11
3 1 1
=4+
4r+1 6 3 *4r+1
Now we will explore a more general “gene”
010101....1111 11...11 11100101 ... 01 01 01 (2.10)

such that the sequence of successive 1 bits starts at bit 2u when the first bit
index is 0 and the first O to the right of this sequence is the bit indexed 2r +1.

Similar arguments to the ones that lead to (2.7) yield the very same value,

g4r—u +l
Delta 3 3 ~(

4Fact0r - 4r—u+1

1 1
+

4"
6 3 * 4r—u+l)

Target =

By looking at sub sequences of the form 010101 ... 10101010 ... 11 01 01 ... 01,
and 11111111 ...111110

the target function of every “gene” can be expressed by summation of several
sums like (2.7)

Target= % (L4 a4 2.11)

6 r —u +1
k=1 q

such that ¢ is the number of such sub-sequences.

Now let use explore concatenation of two sub sequences of the form

101010...1011 101010 ... 11 (2.12)

It is easily verifiable that a single flip of the second bit out of the three successive
ones reduces the two sub sequences to one sub sequence and also reduces the
target function. It is also the shortest improvement in the target function in edit
distance which is here the number of bit flips because our gene doesn’t allow
insertions.

There are two other cases that we have to check, namely

111111 ...111110101010 ... 11 (2.13)
and
101010...101111111111 ... 10 (2.14)

Looking at (2.7) the power 4" offers the greatest decrease of
1

3 % 4r—u+l

the term (é+)4“ which means that the most probable

mutation of (2.13) will be

11111...111110101010 ... 11 (2.15)
11111...111010 101010 ... 11

which is a flip of one bit.
For a very similar reason the most probable mutation of (2.14) will be

101010...1011 11111111 ... 10 (2.16)
101010... 111111111111 ... 10

We are almost done. What is left to handle is edit distances.
By (2.11), (2.12), (2.13), (2.14), (2.15), (2.16) for a sub sequence of the form

1010 10 ... 10 11 (2.17)

or
11111...1110

that has W bits it takes 2% —1 bit flips to reach a sub — sequence of the optimal
“gene” / solution and otherwise the target function only grows if not all the 27 —1

are flipped.

We have also shown in (2.15) and (2.16) that it is most likely that the algorithm
will statistically converge to a “gene” of the type that appears in the right sub-
sequence.

What we have shown is that if the “gene” edit distance from the best target

function is O then there is no other statistical way to reach that “gene” except for
performing all O bit flips otherwise the “gene” by selection will either flip two bits

or one to get the fastest improvement.

3. Experimental performance

The division by power of 4 produces solutions for which the target function is well
below 1 and well above 0 and yet are not the optimal one for which the target
function is 0.00. Artificial punishments for resemblance to other individuals of the
population and other advanced GA methods did not solve the problem of

convergence to the wrong solution although such intervention in the process is

quite typical in GAs. Complex mutations such as inverting all the bits did help,
however, by addition of several bits that each adds a constant value to the target
function and randomly indexing these bits, bit inversion fails.

The reader may say that the target function (1.6) is designed to fail Genetic
Algorithms. That is quite true. A lot of thought was put in (1.6) prior to this paper,
however it raises a legitimate need to develop a theory that will identify which
target functions can be and which can’t be minimized or maximized using
Genetic Algorithms.

Simulations included 52 bits.

The 52 bits real solution:

01 Target 0.00 (3.1)

Under 0.39% and 1.56% mutations, the 52 bits program converged to:

M1 111 110 Target 0.17 (32)
1011 Target 0.17

And on the way to the first two “genes” or solutions, stayed hundreds of

generations in

"1100101 Target 0.17
M1 111001 Target 0.17

With 12.5% mutation the false solution that is mostly reached after thousands of

generations is:
1011 Target 0.17
This could be a result of some artificial control that was added to the genetic

program and is probably not related to theory (the author which is also a
programmer tries not to say the word Bug).

Only conscious rotation to the right of all the bits or inversion of all bits of the last

solution yields the real solution, however, by re-indexing or adding some bits to
slightly modify the target function, even rotation which consists of 52 ordered
mutations doesn’t reach the optimal “gene”. Example for re-indexing, replace the
indices of 2° and 2' then of 2* and 2’ etc. In general swap the indices of 2*

and 2**' |eave all the other indices as they were and update the definition of
(1.6).

Delta 4k+2<2m+1 4k+1<2m+1

Target = 4 Factor s.t. Factor = Za4k+2 + Zamm (3.3)
k=0 k=0

(3.3) shows that even a conscious set of ordered mutations need not solve

our convergence problem in the most general case of minimizing arbitrary target
functions.

There was an attempt to avoid Drift and Scaling problems [1], [2] by promoting
diversity in the population. This was done by multiplication of single individual
results by a wide range of arbitrary punishments. The leading individual was
selected as the one that achieved the smallest target function. The second result
was multiplied by a punishment 1.1 if the gene of the second individual was the
same as the gene of the first chosen individual. The best such gene was sought
for. The third individual was chosen by calculating its target function then if the
third individual was identical to the first then the target was multiplied by 1.1. and
if it was identical to the second it was also punished by a factor of 1.1. A third
such best target function was sought for.

The process went on like that until a quarter of the population was selected.
Complex conscious mutations such as Lin-Kernighan transformations [3], [4] -
which resemble retrotransposon jumps [5] — and that are used in the Traveling
Salesmen Problem are legitimate if we know the order of the bits and indeed a
big mutation of inverting all the bits does solve the convergence problem that is

seenin (3.2). The problem is that by minor amendments of the target function

10

such as changing the order of bits and adding some bits that must be 0 for the
optimal “gene” these methods cease to work. In other words, using conscious
complex mutations requires the target function to have a known structure.

The code for this anti Drift algorithm can be found in the code section of GA.CPP

[/ e
// Population degeneracy prevention algorithm.

/]

// Sort the first survivors/2 by target and be difference
// from leading. This algorithm promotes some gene diversity.

s_half = member n survivors >> 1;
s _idx = s _sort class.member array[0].member index;

member organism class_ array[member n population] =
member organism class arrayls idx];

member organism class array([s idx].function print console();
printf (" %.21f",member results arrayl[s_idx]);

member results array[member n population] =
member results arrayl[s idx];

for (i=1;i<s_half;i++)

{
double s grade,s min=0;
int j,s min idx = -1;

for (j=0;j<member n population;j++)
{

s_grade = member results array([]];

for (k=0; k<i;k++)
{

if (member organism class_ array[member n population + k] ==

member organism class arrayl[]])
{
s _grade *= 1.1; // Punish for identity.

}

}

if (s_grade < s min || s min idx < 0)
{

s _min = s_grade;

s min idx = j;

}

11

member organism class array[member n population+i] =
member organism class array([s min idx];

member results array[member n population+i] =
member results arrayl[s min_ idx];

/=

// End of 'Population degeneracy prevention algorithm'.

A

For a short summery of the experiment:

The population was set to four times the number of survivors.

The mutation rate per bit was set to 0.39%, to 1.56% and to 12.5%.

In the program there is a parameter GA_MUTATION_MASK that is set to a
power of 2 minus one.

If it is set to 255 then the mutation rate is 0.39% =~ 1/256.

If it set to 63 then the mutation rate is 1.56% =~ 1/64.

Survivors were 80 which means a total population of 320 and 200 which means a
total population of 800 individuals.

The use of stochastically irreducible fithess function was detrimental to evolution

and the program drifted towards wrong solutions.

4. Short analysis

What we have shown is the following

Let G,,G,,G,,G,,...,G, represent genes such that:
4.1. G, is a zero initial state in which zero is assigned to all the bits of the gene.

In the program both random initialization and zero initializations can be

used.

12

4.2. The edit distance Edit Dist(G,,G,,,) =1 and the target function for G,,, is

better than in G,, Target(G,,) <T arget(G,).

4.3. G, yields the minimal target function.

4.4. By (2.4) the difference in the target function that is sufficient for the algorithm
not to converge to the best “gene” is infinitesimally small.

4.4 is a bit surprising (and not only as a game of words).

Then GAs need not converge to G, !

Obviously the states 01000000...... , 0101000000000...., 010101000000000...

which represent 2',2' +2° 2" +2° +2° 2" +2° +2° + ..+ 2"V form such Gs.

5. How to run the demo

The C++ console application files GA.CPP,MSORTIDX.CPP,RAND.CPP,
MSORTIDX.H,RAND.H have to be included in a new Console Application project
and should be compiled.

There are three arguments that the program expect:

5.1. Number of generations. Typical values are between 2000 and 1000000.

5.2. Whether the target function is statistically reducible or not. If this number is O
then the target function uses a denominator which consists of powers of 4 as

previously mentioned. If not then the target function is simply the absolute

value |Crux - Sum|.

13

5.3. The third parameter is the number of survivors in each generation or epoch.
The number of individuals in the population is four times that number. Each

surviving individual will have at least three offspring.

Program example command line is: GA 1000000 0 80
To stop the program while running then please press S or s or N or n.

6. Conclusions

GAs are a stochastic way to optimize a target function that is also known as
Fitness function. There could be some traps, however, even infinitesimally small
as the number of bits grow, that can full the genetic algorithm and cause it to
converge to “genes” / solutions that are very far in terms of edit distance from the
optimal ones.

This article shows the need for a theory that will be able to point which fitness
functions can be and which can’t be optimized by genetic algorithms.

Such a theory is a productive goal in the fascinating research of evolutionary
computation.

7. Acknowledgement

My thanks are to my Colleagues Mr. Raviv Yatom and Mr. Irad Heller for their
remarks on Genetic Algorithms.

14

8. References

[1] Rudolph, G., "Convergence analysis of canonical genetic algorithms",
IEEE Transactions On Neural Networks, Jan. 1994, pages 96-101

[2] J.L. Shapiro, "Drift and Scaling in Estimation of Distribution Algorithms",
Evolutionary Computation, MIT Press Cambridge, MA, USA, 2005.

[3] D. Applegate, R. E. Bixby, V. Chvatal & W. Cook,
“Data Structures for the Lin-Kernighan Heuristic”,
Talk presented at the TSP-Workshop, CRCP, Rice University (1990).

[4] K-T. Mak & A. J. Morton,
“A modified Lin-Kernighan traveling-salesman heuristic”,
Oper. Res. Let., 13, 127-132 (1993).

[5] Eugene M McCarthy and John F McDonald, "Long terminal repeat
retrotransposons of Mus musculus”
Genome Biology 2004, 5:R14, 13 February 2004

15

